EZBoil Technical Talk -- How does it Work?

Version 1.1

There are three commonly used methods for AC power control.

1) **Phase angle firing**. In this method, the AC power control is achieved by firing the SCR at different phase angle. This is how our SSVR works. This method offer the most uniform power output. But the output is very difficult to be adjusted linearly due to the shape of the sine wave. Because of the sharp cut off, there is a potential electromagnetic interference (EMI or RFI) if there are inductive devices on the power line. Some of the inductive devices cannot be controlled by this method.

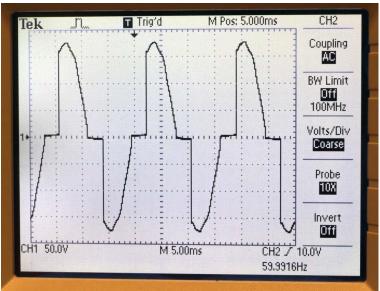


Figure 4. SSVR and TRIAC use phase-angle firing to regulate the power.

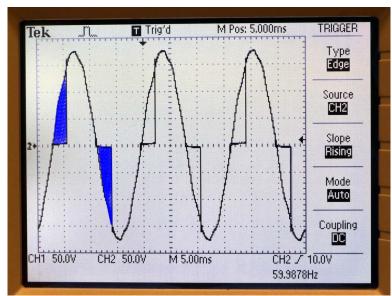


Figure 5. Original AC sine wave is overlaid with SSVR output wave form. The blue colored area shows the power output that has been blocked.

2) **Time proportional firing**. A fixed cycle time needs to be defined in this method. Then, the controller or regulator adjusts the on time during each cycle to achieve the power control. For example, if the cycle time is 1 second, turn on the power for 0.25 second for every 1 second means a 25% power output. Most of PID controllers use this method to control SSRs. This is also how the manual mode of Auber's PID controller works, except the cycle time has to be 2 second or longer. Using this method, the user can linearly adjust output. But the power output is pulsed at each cycle. The shortest cycle time for most PID is either 1 or 2 second. Therefore, power is pulsed at 1 or 2 seconds. When heating a liquid, heat is not transferred as smooth as the phase-angle fire method.

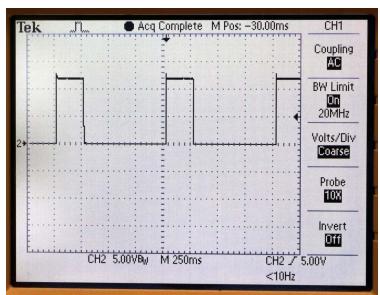


Figure 6. A 25% output control signal from a PID controller in the time proportional firing mode. Cycle time is 1 second. The output signal is 250 millisecond (ms) on, and 750 ms off during each cycle period.

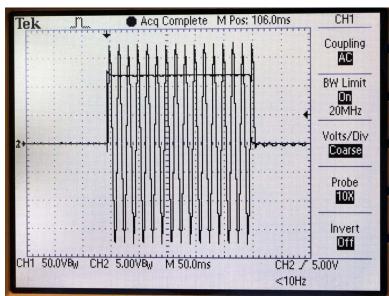


Figure 7. The control signal and SSR output waveform overlaid. When the DC signal (Channel 2, square wave) is on, the AC power can go through (Channel 1). When the DC signal drop to zero, the AC power is blocked.

3) **Burst firing**. This method is similar to time proportional firing (section 2). But in contrast to the time proportional mode, where the SSR is fired once for each fixed cycle period (which are usually 2 seconds or longer), the regulator will find the minimum cycle time to achieve the desired output percentage. The on pulse can be as short as one AC cycle. So power is distributed more evenly over cycle time. This leads to of a more uniform power output. Several PID controllers on the market use this mode. Our DSPR also uses this approach as the default mode to regulate power.

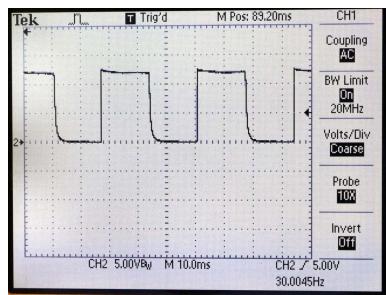


Figure 8. A 50% output control signal from DSPR when it is operating in the bust firing mode. Each pulse is 16.67 ms long, which is the same as a 60 Hz AC cycle. So one pulse on and one pulse cycle off is equal to 50% output.

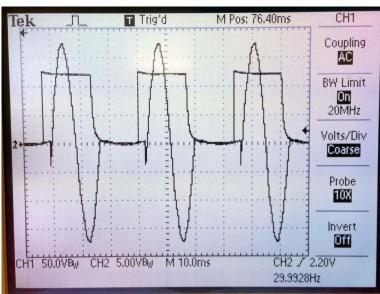


Figure 9. The DSPR control signal and SSR output waveform overlaid. The DSPR detects the frequency and phase of the AC power line, so that the pulse width and firing time is synchronized with AC cycle.

Auber Instruments 5755 North Point Parkway, Suite 99 Alpharetta, GA 30022 <u>www.auberins.com</u>

Email: info@auberins.com Tel: 770-569-8420

Copyright 2007-2018, Auber Instruments All Rights Reserved. No part of this manual shall be copied, reproduced, or transmitted in any way without the prior, written consent of Auber Instruments. Auber Instruments retains the exclusive rights to all information included in this document.